
The

High-Performance Team
Playbook
A real-world guide to building
performance, embedding AI
and reducing risk in software
development teams.

Authored by

Eman Zerafa
CTO

Simon Azzopardi
Partner

© 2026 Cleverbit Software	� cleverbit.software | 2

The High-Performance Team Playbook: Introduction

If you’ve been in engineering leadership long
enough, you carry scars. I know I do.

I’m Simon and I’ve led teams in startups
where the pressure was relentless. We had to
move fast, deal with technologically complex
problems, and ship products nobody thought
were even possible. The bar for performance
wasn’t just high. It was brutal: Deliver late, and
you lose funding. Deliver poorly, and you lose
customers. Deliver without vision, and you
lose your team.

That experience forced me to learn quickly.
Not just how to deliver value at speed, but
how to test, break, and rebuild what makes
both small and large teams perform. I’ve
seen brilliant groups implode because they
lacked alignment. I’ve seen average teams
suddenly click when ownership and clarity
were in place. And I’ve seen how culture,

Introduction:

The Hard Truth About
Building Teams

transparency, and retention can make or
break engineering performance more than
technology ever will.

The truth is this: most engineering teams
are average at best, fragile at worst. And it’s
not because leaders don’t care. It’s because
building high-performance teams is harder
than most people admit. It’s not just about
hiring smart engineers and giving them
Jira boards. It’s about building a system:
ownership, retention, trust, continuity,
and now AI maturity. Miss even one, and
performance starts to crumble.

This paper is the result of years of trial, error,
and hard lessons. It’s written for CTOs and
engineering managers under the same
pressures I’ve lived through: where the
stakes are high, the timelines short, and the
demands unrelenting.

Along the way, I’ll also bring in our CTO,
Eman Zerafa. Eman has deep tech leadership
experience and is today breaking new
ground on the topic of how AI is reshaping
software delivery. His perspective comes
straight from experiments with real teams and
systems. With the way software development
is changing, his views and research are
critical. Where my scars come from leading
under pressure, his come from testing how
new tools and approaches actually work in
practice.

My aim is simple: if you’re
going at it alone, here’s the
playbook I wish I’d had when
I was in your shoes.

Simon Azzopardi
Partner

https://cleverbit.software/

Introduction: The Hard Truth About Building Teams		� 2

Part 1. How to Build a High-Performance Software � 4
	 Engineering Team	

1.1 Foundations of High-Performance Teams � 5
Ownership over Delivery � 6
Cultural Alignment	 � 7
Psychological Safety with Accountability� 7
Clarity of Roles and Autonomy	 � 8
Retention as a Performance Strategy � 8

1.2 Talent: Hiring, Retention & Development � 10
Hiring for Fit, Not Just Skills	� 11
Retention Through Growth	� 11
Knowledge Transfer & Continuity	� 12
Development & Mentorship	� 12

1.3 Structures That Enable Performance	� 14
Team Composition Matters	� 15
Leadership as an Enabler	� 15
Governance Without Bureaucracy� 16	
Exit & Continuity Planning	� 16

1.4 Building Trust & Transparency� 18
Hyper-Transparency: Beyond Dashboards� 19	
Adapting Communication for Stakeholder� 19

Table of Contents

Part 2. Leveraging AI in High-Performance Teams � 21

2.1 Leveraging AI in High-Performance Teams	� 22
AI as a Force Multiplier� 23
The Risk of Vibe Code Drift	� 23
Regenerate, Don’t Patch	� 24
Guardrails, not handcuffs	� 24
Humans Where It Counts� 25

	
2.2 Measuring Performance: Metrics That Matter� 27

Outcome over Activity	� 28
Leading vs Lagging Metrics	� 28
Caring About the Long Term	� 29
AI Productivity: Uplift vs Noise	� 30

2.3 Common Pitfalls & How to Avoid Them	� 32
Mistaking Activity for Progress	� 33
Hiring the Wrong “Rockstars”	� 33
Over-Indexing on Leadership Style	� 34
Governance That Strangles	� 34
Retention for the Wrong Reasons� 35	
Lack of Continuity Planning	� 35
Misusing AI	� 36

Conclusion: The Choice Ahead � 38
	
Checklist: Am I Building a High-Performance Team?	 � 40

About the Authors	� 41

Part 1.
How to Build a
High-Performance
Software Engineering Team

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 5

1.1 Foundations of
High-Performance Teams

Bridging from the Classics

When people hear about “five foundations”
of teams, many think of Patrick Lencioni’s
Five Dysfunctions of a Team. It remains one
of the best frameworks for understanding
the relational side of teamwork: trust, conflict,
commitment, accountability, and results.

What we share here doesn’t replace
that, it builds on it. If Lencioni described
the interpersonal dynamics, these are
the operational dynamics we’ve seen
in software engineering: the structures,
cultural signals, and leadership choices that
consistently separate fragile teams from
high-performance ones.

Our five foundations
come from both scars
and evidence.
We’ve seen teams
falter when one
was missing, and
thrive when all were
present.

The research echoes these lessons:

•	 Google’s Project Aristotle found
psychological safety was the strongest
predictor of team success, but also
showed that cultural alignment and
humility mattered more than pure
technical skill.

•	 DORA’s State of DevOps reports
showed elite teams deliver more
frequently, recover faster, and
avoid burnout, thanks to lightweight
governance, clear ownership, and a
focus on outcomes over activity.

When I look back at the teams I’ve led, the difference between those that thrived and those that
broke down came down to five foundations. None of these are theoretical. They’re scars, things
I’ve learned by getting them wrong before I got them right. And the research backs it up.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 6

Foundation 1: Ownership Over Delivery

Performance collapses without ownership. Teams
that only deliver tasks may look efficient in the short
term, but when priorities shift or pressure rises, they
stall.

High-performance teams behave differently. They
act like partners, not order-takers. They connect their
work to business outcomes, raise issues early, and
balance pragmatism with quality.

Ownership is the thread that ties it all together,
without it, the other foundations don’t stick. That’s
why ownership has to run through everything: how
people are recruited, how tasks are written, how
teams are structured. It’s why work is framed with the
“why” as much as the “what.” It’s why mentorship and
context are part of onboarding. And it’s why simple
principles, think an ownership manifesto, exist to
guide decisions when pressure is high.

As we often remind teams:
“If you were the one paying for this, would you still
make this decision?”

That question shifts people from executors to
partners, from order-takers to owners.

According to McKinsey, teams with strong alignment
to business purpose are 2.4x more likely to hit
performance targets than those without.

Lesson Learned:
Don’t starve developers of context. If you
treat them like code monkeys, they’ll act like
it. If you give them purpose, they’ll act like
owners.

Average Teams:
Close tickets, but remain
disconnected from
outcomes.

High-Performance Teams:
Take accountability,
connect work to value,
and adapt as if success or
failure were their own.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 7

The strongest developers I’ve worked with
weren’t just great coders. They could talk
to the business. They could say “no” when
something didn’t make sense, and they had
the humility to admit when they didn’t know
the answer.

The weak link is the “diva developer”:
technically brilliant, but allergic to feedback,
dismissive of the business, or convinced
they always know best. I’ve seen one diva
destroy a team faster than a bad manager.

Lesson Learned:
Culture is not about “being nice” or “feeling like a
family.” It’s about building a team of adults who can
talk across the business and check their egos at the
door.

Research by Google’s Project Aristotle found that the
strongest predictor of team success wasn’t raw IQ or
technical skills, but conversational turn-taking and social
sensitivity: in other words, cultural alignment and humility.

Foundation 2: Cultural Alignment (Anti-Diva, Pro-Business)

Average Teams:
Stay in their technical bubble,
doing what they’re told, or
letting strong personalities
dominate.

High-Performance Teams:
Integrate into the wider
business. They challenge
constructively, they listen, and
they know they don’t have all
the answers.

Foundation 3: Psychological Safety with Accountability (Meritocracy, Not Family Spirit)

Lesson Learned:
Safety without ownership is chaos. Ownership without
safety is silence. You need both.

In Google’s study of 180+ teams, psychological safety was
the #1 factor for performance. But without accountability,
it slips into complacency. Gallup data shows only 21% of
employees strongly agree their performance is managed in
a way that motivates them to do outstanding work.

I’ve worked in environments where everyone
said “we’re a family.”

It sounds nice, but it usually means avoiding
hard conversations and tolerating mediocrity.

That kills performance.

Average Teams:
Either stay silent out of fear
or hide behind “family spirit”
where nothing is challenged.

High-Performance Teams:
Speak up, take ownership,
and know performance is
what earns respect.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 8

I once watched a release stall for three weeks because
nobody knew who was supposed to make a decision.
Leadership kept getting dragged in, morale dipped, and
progress stopped.

High-performance teams thrive on clarity. Roles are clear,
decisions are delegated, and autonomy is real. People
don’t need a manager in every meeting to move forward.

And yes, autonomy means mistakes will happen. That’s
where learning comes from.

Lesson Learned:
Autonomy means people will sometimes mess
up. That’s the price of building leaders, not
followers.

Harvard Business Review found that teams with clear
roles and decision-making structures are 53% more
effective at execution than teams without them.

Foundation 4: Clarity of Roles and Autonomy (With Room to Fail)

Average Teams:
Depend on managers for
every call, paralysed by
fear of screwing up.

High-Performance Teams:
Know who owns what, act
with autonomy, and learn
from failure.

I used to think retention was always good. If people were
staying, I assumed we had stability. I’ve since learned that
retention can also mean stagnation. I’ve seen teams where
nobody left, not because they were thriving but because they
were comfortable, coasting or stuck.

Performance was flat, innovation was dead, but on paper
retention looked great. The high-performance teams I’ve
worked with had high quality retention. The right people
stayed because they were challenged and growing. The
wrong people moved on.

Lesson Learned:
Retention matters, but only if it’s driven by
growth and performance, not comfort and
complacency.

A recent LinkedIn survey showed that 94% of
employees would stay longer if companies invested in
their growth. Retention without growth, however,
leads to stagnation.

Foundation 5: Retention as a Performance Strategy (But for the Right Reasons)

Average Teams:
Retain by default, even as
performance stagnates.

High-Performance Teams:
Retain because
the environment is
challenging, fair, and
rewarding.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 9

Bringing It
Together
When you see these five foundations in place, the
difference is obvious. Developers don’t just code;
they argue priorities, speak to the business, own
mistakes, and stay because they’re growing.

Miss any of these, and you feel the cracks fast.
I’ve seen teams fall apart because they had smart
people but no context, or because they clung
to “family spirit” while mediocrity spread. High
performance isn’t about hype. It’s about design,
discipline, and outcomes.

Foundations of
High-Performance Teams

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 10

You can’t build a high-performance team
without the right people.

But I’ve learned the hard way: it’s not just
about hiring “the best.”

1.2 Talent: Hiring,
Retention & Development

It’s about hiring for
fit, keeping them for
the right reasons, and
constantly pushing for
growth.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 11

I once hired a technically brilliant engineer to lead a team of very
senior people. He truly was a genius. He was also almost always
right. The problem was he loved being right. He shoved it down
everyone’s throat. Nobody else had a voice. Instead of lifting the
team, he drained its energy.

When we finally let him go, the difference was immediate. The
team, still highly competent, found its voice. They debated, they
disagreed, they owned outcomes together. And they moved
faster.

Strategy 2. Retention Through Growth (Not Comfort)

Strategy 1. Hiring for Fit, Not Just Skills

Average Teams:
Hire “rockstars” who
dominate the room but
suffocate collaboration.

High-Performance Teams:
Hire problem-solvers who
enable others, not just
themselves.

Google found that technical skills accounted for less
than 20% of long-term success in engineering hires;
adaptability and collaboration mattered far more.

Lesson Learned:
Don’t just hire brilliance. Hire brilliance that leaves
room for others to shine.

Let’s face it: you build relationships with people. I once had
someone on a team responsible for solving time-sensitive issues.
She was struggling. There were very real personal challenges,
and I wanted to support her. We all picked up the slack, made
excuses, gave more time.

But things got worse, not better. I dragged my feet for months. In
hindsight, I should have acted in days or weeks. The truth is that
the whole team is more important than any individual, no matter
how much empathy you feel.

Average Teams:
Keep people out of loyalty
or comfort, even when
performance is gone.

High-Performance Teams:
Retain because people are
growing, not because it feels
easier to avoid tough calls.

LinkedIn data shows 94% of employees would stay
longer if companies invested in their growth and
development.

Lesson Learned:
Retention should mean progress. Keeping
someone too long out of loyalty isn’t kindness; it
risks the whole team.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 12

One thing I’ve always been obsessive about is knowledge
transfer. I never wanted a single engineer, no matter how good, to
be indispensable.

I made knowledge socialisation a core practice. Not just
documentation, but deliberate opportunities for people to share
what they knew, through demos, shadowing, rotating ownership.
Because the truth is, people do leave. Pretending otherwise is
reckless.

Strategy 4. Development & Mentorship

Strategy 3. Knowledge Transfer & Continuity

Average Teams:
Depend on “hero engineers”
and hope they never leave.

High-Performance Teams:
Build systems where
knowledge is shared, and
no resignation can derail the
roadmap.

Forrester reports that 53% of IT leaders see knowledge
loss due to turnover as a top threat to performance.

Lesson Learned:
Leaders aren’t indispensable. The moment you
believe they are, you’ve built fragility into your
team.

I am the best example of why mentorship matters. My career
accelerated because I had great mentors. The quality of my
mentors directly influenced the speed of my growth.

That lesson stuck with me.

I want people I lead to feel that same lift: that someone cares
about their potential, pushes them, and shows them the next step.
And I want them to pass that same care on to others.

Average Teams:
Leave growth to chance.

High-Performance Teams:
Build mentorship into
the culture, so learning
compounds across the team.

Deloitte found that organisations with formal mentorship
programs see higher engagement (67%) and retention
compared to those without.

Lesson Learned:
A team that isn’t learning is a team that’s falling
behind. Mentorship isn’t a “nice to have”; it’s a
performance engine.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 13

Bringing It
Together
Hiring great people isn’t enough. If they don’t fit,
if they don’t grow, or if knowledge isn’t shared,
performance will eventually break.

But if you get hiring, retention, continuity,
and mentorship working together, you create
compounding performance.

Talent: Strategies for
Hiring, Retention &
Development

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 14

Talent alone won’t make a team high-
performing. You need structures that
channel that talent into consistent, reliable
output while preserving autonomy.

1.3 Structures That
Enable Performance

I’ve seen brilliant
people underperform
in the wrong
structure, and
average teams thrive
in the right one.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 15

I was once part of an early-stage business that had plenty of
“C-level power,” senior strategists, architects, and executives,
but very little execution strength. Most of the team in the engine
room were juniors, and the disconnect was comical. Strategy after
strategy came out of the boardroom, but very little actually moved
forward.

The problem? Leaders often want to hire people like themselves.
Senior people hire seniors, because it feels comfortable. But a
team full of strategists without enough doers is a recipe for slow
progress.

Consideration 2: Leadership as an Enabler (Not a Commander)

Consideration 1: Team Composition Matters

Average Teams:
Over-index on one level
of seniority, with either too
many juniors (fast but brittle)
or too many seniors (smart
but slow).

High-Performance Teams:
Strike a balance. Seniors set
direction and mentor, mids
carry the load, and juniors
inject energy and learn.

Microsoft research found that teams with a balanced
seniority mix were 30% more productive than
homogeneous teams.

Lesson Learned:
Don’t build teams for comfort. Build them for
execution.

I was once thrown into a company built entirely around a command-
style leader. When that leader left, the organisation fell into utter
confusion. Nobody knew how to act, because they were used to
being told what to do. The dependency was the risk.

When we shifted leadership style, empowering managers to set
context and teams to make decisions, the effect was dramatic. We
gained speed, resilience, and during the pandemic (the hardest
operating environment I’ve ever seen), we hit record growth.

Average Teams:
Rely on a commander to
make every call.

High-Performance Teams:
Have leaders who enable,
not dictate, removing
blockers, setting vision, and
creating space for people to
act.

Gallup shows that teams with “coaching-style” leaders
are 12% more productive and 30% more engaged than
those with directive managers.

Lesson Learned:
A “commander” isn’t just risky; it’s a single point
of failure. Leadership should enable resilience,
not dependency.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 16

I’ve seen governance spin out of control. We create rules to
manage exceptions, to prevent the mistakes of weak teams. But
those same rules end up suffocating good teams.

Processes multiply until high performers are slowed down by
bureaucracy designed for mediocrity.

Consideration 4: Exit & Continuity Planning

Consideration 3: Governance Without Bureaucracy

Average Teams:
Drown in governance built for the
lowest common denominator.

High-Performance Teams:
Use lightweight governance,
including automation, dashboards,
and clear reviews, as a safety net,
not a straitjacket.

The DORA report shows that elite-performing
teams spend 50% less time on unplanned
work thanks to lightweight, automated
governance.

I once managed 60 engineers outsourced from a supplier. They
were excellent; talented, motivated, delivering real value. Then
the supplier was sold. New management came in, prices spiked,
and culture shifted overnight. What had been a high-performing
setup turned into a nightmare. Exiting was painful, expensive, and
filled with uncertainty, right in the middle of the busiest season of
the business.

That experience left a scar. It taught me that continuity and exit
planning aren’t optional extras. They’re survival.

Average Teams:
Hope key people and suppliers
never change.

High-Performance Teams:
Bake continuity in, with knowledge
redundancy, succession planning,
and contracts designed to preserve
ownership and flexibility.

PwC found that 39% of CEOs are “extremely
concerned” about talent continuity risk, yet
most companies don’t build structures to
mitigate it.

Lesson Learned:
Build governance for performance, not
mediocrity.

Lesson Learned:
Continuity is the invisible foundation
of performance. Ignore it, and you’re
gambling with your future.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 17

Bringing It
Together
The right structure doesn’t feel like bureaucracy.
It feels like freedom. Teams have clarity, balance,
and resilience. They move fast without being
reckless, and they can survive change without
falling apart.

And here’s the ultimate truth I’ve learned: bad
performance is never just about the people. It’s
about the context too. The wrong structure can
make good people look bad. The right structure
can unlock hidden potential. If you want high
performance, you need both: quality people and
an environment designed for them to thrive.

Structures that
Enable Performance

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 18

The strongest teams I’ve worked with
weren’t just technically capable; they were
radically open with each other and with the
business.

The weakest ones were opaque, defensive,
or siloed.

1.4 Building Trust
& Transparency

If there’s one thing
I’ve learned, it’s that
trust doesn’t appear
by accident. It has to
be engineered.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 19

In the early days, our teams used to give
periodic updates to the wider company.
They were dry, technical presentations;
informative, but forgettable.

I started coaching lower-level engineers to
present instead, and to inject some of their
personality into it. Suddenly, these updates
weren’t just about code, they were about
people.

Step 2: Adapting Communication for Stakeholders

Step 1: Hyper-Transparency: Beyond Dashboards

However transparency isn’t just about volume. I’ve
seen engineers get frustrated when a client asks a
question and they respond with, “Yes, but I already
told you this.”

It’s a classic trap. Information may have been shared,
but not in a way that stuck with the audience.
Transparency isn’t about dumping data; it’s about
making sure stakeholders can actually understand
and use it.

Average Teams:
Share information passively
and expect the business to
adapt.

High-Performance Teams:
Adapt their communication
so stakeholders can absorb
it, act on it, and trust it.

PMI found that 56% of project failures cite poor
communication as the main cause, usually not because
information wasn’t shared, but because it wasn’t shared
in the right way.

Lesson Learned:
Transparency without empathy is noise. True
transparency means making information visible
and consumable

The impact was surprising: one Chief
Strategy Officer found common ground with
a UX designer over their shared love of
Japanese culture. That connection wouldn’t
have happened without engineers being
visible as humans, not just coders.

And once those human bonds formed,
conversations about priorities and trade-offs
flowed far more naturally.

That’s the essence of hyper-transparency:
making information visible, and equally,
making the people behind it visible.

Transparency should build trust not just in
the work, but in the humans delivering it.

https://cleverbit.software/

Part 1. How to Build a High-Performance Software Engineering Team

© 2026 Cleverbit Software	� cleverbit.software | 20

Bringing It
Together
Trust is built on visibility, but also on accessibility
and humanity. Dashboards, metrics, and repos
are essential. But so is giving engineers a voice,
letting them connect as people, and adapting
communication so stakeholders actually trust
what they hear.

When transparency is engineered this way, trust
becomes natural, and with trust comes speed.

Building Trust
& Transparency

https://cleverbit.software/

Part 2.
Leveraging AI in
High-Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 22

Part 2. Leveraging AI in High Performance Teams

2.1 Leveraging AI in
High-Performance Teams

AI is no longer a question of “if.” It’s already
in the room. Most developers today have
GitHub Copilot, ChatGPT, or some other
assistant running in the corner of their IDE.
The real question is: are you using it in a
way that compounds performance, or in a
way that creates fragility?

Over the last two years, my focus has been
on testing AI-first development models.

What we’ve found
is simple: AI can be
a force multiplier,
but only when used
with maturity and
guardrails. Without
that, it leads to what
we call vibe code
drift: plausible-looking
code that quietly rots
your codebase.

Eman Zerafa
CTO, Engineering & AI Leadership

Up to this point, I’ve shared what I’ve learned about building high-performance teams:
ownership, culture, safety, clarity, retention, structure, trust, transparency. But there’s one
area where I’m not the expert, and where the landscape is shifting faster than ever: AI.
At Cleverbit, our CTO - Eman Zerafa, has been leading our research into how AI is changing
software engineering, not in theory, but in daily practice across live projects. I’ve asked him
to share his perspective here, because the reality is that high-performance teams today
can’t ignore AI. It’s already transforming the way we build, and it brings both opportunities
and risks.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 23

Most teams use AI haphazardly. AI isn’t a silver bullet; it’s a system
component. Yet, most teams use it like a shiny new gadget. Developers
try whatever tool lands on their feed, with no defined workflow, no
quality standards, and no shared understanding of when to trust or
verify outputs. The result? Inconsistent code, duplicated effort, and a
false sense of speed.

High-performance teams don’t just use AI. They design for it. They
define where it fits in their development cycle: scaffolding, testing,
review, documentation. They set guardrails for what’s acceptable and
measurable outcomes for what “AI-assisted” really means.

Lever 2: The Risk of Vibe Code Drift

Lever 1: AI as a Force Multiplier

Average Teams:
Treat AI as a fancy
autocomplete.

High-Performance Teams:
Use AI as part of structured
workflows - scaffolding,
testing, edge case
discovery, documentation.

McKinsey estimates AI in software
development can increase
productivity by 20–45%, depending
on maturity of adoption.

Lesson Learned:
Treat AI as part of your delivery
system, not a toy in your IDE.

The biggest risk with AI in development isn’t that it writes bad code;
it’s that it writes convincing code. Clean, idiomatic, and seemingly
bulletproof, yet still wrong. That’s vibe code drift: when developers start
to trust the output because it feels right. Over time, reviews become
cursory, assumptions harden into “truths,” and subtle flaws accumulate
beneath a surface of polished syntax.

We’ve seen pull requests that looked flawless. Until someone traced
the logic and realized the code was doing something no one actually
intended. That’s the danger: trust built on vibe, not verification.

Average Teams:
Trust AI output at face value,
fix it only when it fails.

High-Performance Teams:
Treat AI-generated code
as disposable. If it’s wrong,
regenerate. Don’t patch.

A GitHub study found that 36% of
developers using AI-assisted coding
admitted to shipping code they
didn’t fully understand.

Lesson Learned:
AI isn’t dangerous because it’s
bad. It’s dangerous because it’s
convincing.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 24

When AI-generated code fails, the reflex is to fix it: adjust a few lines,
rerun the test, and move on. But that mindset turns AI into a productivity
sink. You end up chasing coherence across outputs that were never
meant to fit together.

The better approach is to reset. Start from a clean slate with a clearer
objective and simpler context. AI performs best when the problem
space is well-defined, not when it’s buried under layers of patched
prompts and partial fixes.

Lever 3: Regenerate, Don’t Patch

Average Teams:
Keep tweaking AI output until
it works.

High-Performance Teams:
Know when to stop fixing and
start over. Keep the context
clean, and the workflow
simple.

Lesson Learned:
AI is probabilistic. Don’t fix
symptoms - fix the process.

AI is designed to please and will confidently build whatever you ask for. It can analyse regulations, propose
trade-offs, and generate solutions at scale. What it can’t do is decide which problem is worth solving, or
take responsibility when choices have real impact.

The strongest results come from teams that use AI for what it’s best at: speed, breadth, and synthesis, while
keeping humans in charge of intent, ethics, and accountability.

AI explores possibilities, generates options, and tests assumptions. Humans define direction, decide what
matters, and sign off on what ships.

Guardrails ensure the system reflects human intent, not just statistical confidence.

Lever 4: Humans Where It Counts

Harvard Business Review reports
that 78% of executives believe
human judgment will remain
critical in AI-augmented work.

Lesson Learned:
AI can accelerate delivery.
Only humans can ensure it’s
the right delivery.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 25

Lever 5: Guardrails, not handcuffs

The goal isn’t to replace human judgment; it’s to
scale it. Most teams swing between two extremes:
free-for-all AI usage or complete lockdown. Both fail.

Thinking AI-first means designing the system so
teams know when and how to use AI effectively.
Guardrails protect against chaos, but clarity unlocks
speed.

Average Teams:
Either let AI run wild or ban it
outright.

High-Performance Teams:
Treat AI like any other engineering
capability: governed, measured,
and applied with intent.

MIT Sloan found that companies deploying AI
with strong governance saw 2.6x higher ROI
than those without.

Lesson Learned:
Don’t fight AI. Frame it. Guardrails turn
risk into value.

Encourage
Exploration:

Some stages such
as early prototypes,

UI sketches and idea
validation benefit

from fast, loose “vibe
coding.”

Enforce
Rigor:

In critical paths such
as security, finance,

and core logic, AI use
should be constrained

and reviewed.

Define
Rules:

Set standards for
prompt hygiene, review
expectations, and what
“AI-assisted” means in

your org.

Automate
Safety:

Use CI checks,
static analysis, and

vulnerability scans as
default guardrails, not

afterthoughts.

https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 26

Part 2. Leveraging AI in High Performance Teams

Bringing It
Together
This is why I believe high-performance teams
today need not just great people and strong
structures, but also mature AI practices.

Anything less is leaving performance on the
table or worse, inviting fragility.

Leveraging AI
in High-Performance
Teams

https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 27

Part 2. Leveraging AI in High Performance Teams

2.2 Measuring
Performance: Metrics
That Matter

Measuring performance in engineering is
brutally hard. It’s not just about tracking
output. It’s about understanding the value
we’re actually delivering, why the team is
engaged in this mission, and boiling it down
to the few levers we can truly control.

I’ve sat in rooms with beautiful charts: burn-
downs, velocity, hours logged and still had
to answer the question from the board:
“But what did this actually achieve?” That’s
the reality. We can make ourselves look
busy. We can even make ourselves look
fast. But unless the metrics connect back to
outcomes the business cares about, we’re
lying to ourselves.

Average teams
measure what’s
convenient.

High-performance
teams measure what
matters.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 28

I once led a team that was closing tickets
at speed. Our dashboards looked green,
velocity was climbing.

But sales was stalling because customers
weren’t adopting. We were winning sprints
and losing the game.

Tip 2: Leading vs Lagging Metrics

Tip 1: Outcome Over Activity

Average Teams:
Measure busyness: story points, tickets
closed, hours worked.

High-Performance Teams:
Measure business outcomes: features
used, customer value delivered, cost
savings

McKinsey found that companies that shift from
activity metrics to outcome metrics are 1.9x
more likely to outperform peers on profitability.

Lesson Learned:
Activity creates the illusion of progress.
Outcomes prove it.

Another trap is obsessing over lagging
indicators: revenue, adoption, uptime. By
the time those numbers move, the damage
is already done.

The best teams I’ve seen use leading
indicators: early signals like user feedback
in beta, time-to-merge PRs, or test coverage
trends. These give warning before the
bottom-line suffers.

Average Teams:
Wait for lagging KPIs to show a problem.

High-Performance Teams:
Watch leading indicators to course-correct
early.

DORA’s State of DevOps report shows elite
teams that use leading metrics deliver 46x
more deployments than low performers.

Lesson Learned:
Don’t wait for the quarterly report to tell
you performance slipped. Spot it in the
daily signals.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 29

I used to believe engagement surveys were a
measure of performance. They’re not. I’ve had teams
that looked engaged on paper, happy, stable, but
output was flat.

What really matters is whether the team cares. Do
they care about the long-term outcome, or are they
just clocking in? Do they feel ownership over the
mission, or are they just running sprints?

And here’s the part leaders often miss: caring doesn’t
happen by chance. It’s our responsibility as leaders
to create the conditions where people connect with
the bigger picture and feel their work matters.

Some businesses chase high performance at all
costs. They burn teams out, replace them, and keep
moving. If that’s what the business needs, fine. I might
not agree with it, but I won’t say it’s wrong in principle.

But if you want teams to deliver high performance
over time, you need them to care. Without that,
performance is always temporary.

Tip 3: Caring About the Long Term

Average Teams:
Focus on the short
term, delivering fast
but disconnected from
outcomes.

High-Performance Teams:
Care about the long term: the
product, the customer, the
mission, because leadership
gave them a reason to.

MIT Sloan research shows that employees
who believe their work has purpose are 2.6x
more likely to remain at a company and 3x
more engaged in delivery.

Lesson Learned:
High performance isn’t just about speed.
It’s about whether people care enough to
sustain it. And that starts with leadership.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 30

Tip 4: AI Productivity: Uplift vs Noise

This is where I hand over briefly to Eman. AI has made
metrics even trickier. It’s easy to assume productivity
is up just because code is being generated faster.
But the question is: are we getting true uplift, or just
faster noise?

Eman’s View (CTO):

We measure AI impact not by how much code is
written, but by the ratio of AI-generated value that
survives into production without human patching.

If a model produces 200 lines of code and 150 get
regenerated or rewritten, that’s not uplift; that’s churn.
True uplift shows up when:

•	 AI-generated code passes tests without
human correction.

•	 Developers spend more time on ambiguity
and less on mechanics.

•	 Release cycles shorten without quality
dropping.

Average Teams:
Assume AI improves
productivity because more
lines of code are written.

High-Performance Teams:
Measure uplift against
baselines: how much faster
value reaches production, at
equal or higher quality.

In our experiments, AI uplift ranged from -10%
(slower, more patching) to +45% (faster, higher
quality) depending on whether guardrails and
regeneration practices were in place.

Lesson Learned:
Don’t assume AI is helping. Prove it.

https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 31

Part 2. Leveraging AI in High Performance Teams

Bringing It
Together
Performance isn’t about looking busy, feeling
happy, or reporting pretty charts. It’s about
whether the team is delivering outcomes the
business cares about, whether they can sustain
that performance over time, and whether AI
is genuinely compounding value instead of
creating noise.

The only metrics that matter are the ones that
connect back to value, and the ones the team
can actually influence. Everything else is vanity.

Measuring Performance:
Metrics that Matter

https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 32

Part 2. Leveraging AI in High Performance Teams

2.3 Common Pitfalls &
How to Avoid Them

Every time I’ve seen a team fail, it hasn’t
been because people weren’t smart or
hard-working. It’s because of the same
patterns repeating.

Here are the pitfalls I’ve run into, and
what separates average teams from high-
performance ones.

When these pitfalls hit, average teams get
busier and more brittle: confusing activity
with progress, and hoping vendors or AI
won’t blow up on them.

High-performance
teams treat the same
signals as prompts to
reset: they re-anchor
on outcomes, back
enablers over divas,
keep governance
light, retain for
growth, design for
continuity and use
AI with guardrails
so issues become
course-corrections,
not crises.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 33

I’ve seen teams sprint through tickets, log
long hours, and proudly present “green
dashboards.” But when we asked “what
business problem did we solve?” the room
went quiet.

Pitfall 2: Hiring the Wrong “Rockstars”

Pitfall 1: Mistaking Activity for Progress

Pitfall:
Confusing busyness with value.
		
Consequence:
Leaders get blindsided; teams look
productive until customers or investors ask
the hard questions.

Avoid it:
Measure outcomes, not just activity. Tie
performance to business impact.

McKinsey: companies that shift to outcome
metrics are 1.9x more likely to outperform
peers on profitability..

I once hired a technically brilliant engineer
who was almost always right. The problem?
He loved being right. He drained energy
from everyone else, and the team froze.
When he left, the team found its voice and
sped up.

Pitfall:
Hiring brilliance that silences others.

Consequence:
Teams lose ownership, collaboration, and
speed.

Avoid it:
Hire problem-solvers who enable others,
not divas who dominate.

Google research: collaboration and
adaptability predict long-term success more
than raw technical skill.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 34

I once worked in a company built around a
“commander.” When he left, the organisation
fell into chaos.

Teams didn’t know how to move without
orders. That dependency was the risk.

Pitfall 4: Governance That Strangles

Pitfall 3: Over-Indexing on Leadership Style

Pitfall:
Building teams dependent on command-
and-control.

Consequence:
Fragility occurs when the leader goes and
performance collapses.

Avoid it:
Build enabling leadership.
Leaders set clarity and guardrails, but
teams own execution.

Gallup: teams with coaching-style managers
are 30% more engaged than those with
directive managers.

I’ve seen rules multiply until high-performing
teams were slowed to a crawl.

Governance designed to protect against
weak teams ended up suffocating the good
ones.

Pitfall:
Creating governance for mediocrity.

Consequence:
High performers disengage, velocity
plummets.

Avoid it:
Keep governance lightweight. Automate
checks, trust teams, and use rules as safety
nets, not handcuffs.

DORA report: elite teams spend 50% less
time on unplanned work thanks to lightweight
governance.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 35

I once kept someone on a critical team far
too long. I empathised with their personal
struggles, but performance was falling.
By the time I acted, the whole team was
suffering.

Retention looked good on paper, but the
reality was decline.

Pitfall 6: Lack of Continuity Planning

Pitfall 5: Retention for the Wrong Reasons

Pitfall:
Equating retention with success.

Consequence:
Stagnation, lowered standards, team
frustration.

Avoid it:
Retain for growth, not comfort. High
performers stay because they’re
challenged and cared for.

LinkedIn: 94% of employees would stay longer
if companies invested in their growth.

I once managed 60 outsourced engineers.
They were high-performing, great people.
Then the supplier was sold.

Overnight, prices spiked, culture changed,
and continuity collapsed.

Exiting was painful and expensive in the
busiest season of the year.

Pitfall:
Assuming great teams last forever.

Consequence:
Supplier changes, leadership exits, or
resignations derail the roadmap.

Avoid it:
Bake continuity in with succession plans,
documentation, contracts that protect IP
and flexibility.

PwC: 39% of CEOs are “extremely concerned”
about continuity risk, but most don’t build
structures to manage it.

https://cleverbit.software/

Part 2. Leveraging AI in High Performance Teams

© 2026 Cleverbit Software	� cleverbit.software | 36

Eman’s View (CTO):

One of the most dangerous pitfalls I see
today is treating AI like a magic wand. Teams
paste prompts, trust outputs that “look right,”
and ship them without question. This leads
to vibe code drift: plausible code that hides
fragility.

Pitfall 7: Misusing AI

Pitfall:
Using AI recklessly, assuming more code =
more productivity.

Consequence:
Fragile codebases, regressions, false
confidence.

Avoid it:
Use AI with guardrails. Regenerate instead
of patching. Automate verification. Keep
humans in control of ambiguity and
accountability.

GitHub: 36% of developers admit to shipping
AI-generated code they didn’t fully understand..

https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 37

Part 2. Leveraging AI in High Performance Teams

Bringing It
Together
The common thread across all these pitfalls?
None of them are about weak people. They’re
about weak systems: bad hiring choices, the
wrong structures, short-termism, missing
guardrails.

High-performance teams aren’t built by avoiding
mistakes entirely. They’re built by designing
systems where these mistakes don’t become
fatal. That’s the real test of leadership.

Common Pitfalls
and How to Avoid Them

https://cleverbit.software/

Conclusion:

The Choice Ahead

© 2026 Cleverbit Software	� cleverbit.software | 39

The High-Performance Team Playbook: Conclusion

Building high-performance teams is hard.
But it’s not impossible. The choice is
whether you accept fragility, with teams that
look busy, suppliers who change the rules,
codebases that drift, or whether you design
for resilience.

Some companies burn people out and
replace them. If that’s your model, fine.
But if you want performance that lasts, you
need ownership, alignment, trust, continuity,
and AI maturity.

Conclusion

The Choice Ahead

The outsourcing world is broken. It locks
you in, hides the truth, and leaves you
exposed. That’s why we built something
different.

We’re the underdog, and we like it that way.
Because we’ve lived the pain of getting this
wrong, and we’ve built a model that fixes it.

Use this playbook if you want to go it alone.
And if you don’t want to carry all the risk
yourself, know there’s another way.

The choice is yours.

https://cleverbit.software/
https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 40

The High-Performance Team Playbook: Conclusion

Do my engineers know why
they’re building, not just what?

Can engineers challenge the
business without being divas?

Do we balance psychological
safety with accountability?

Are roles clear enough that
people can move with autonomy
- and even fail - without chaos?

Checklist:

Am I Building a High-
Performance Team?

Is retention driven by growth, not
comfort?

Is the team structure balanced, not
built for comfort?

Is governance a safety net, not a
straitjacket?

Can we survive the departure of
any key leader or supplier?

Is transparency human as well as
technical?

Do my teams care about the long
term, and have I given them a
reason to care?

Are we using AI with maturity -
guardrails, regeneration, human
oversight - or drifting into fragility?

https://cleverbit.software/

© 2026 Cleverbit Software	� cleverbit.software | 41

The High-Performance Team Playbook: Conclusion

Eman has led teams through high-stakes deliveries, always pushing for
accountability and ownership as the core of performance. He believes
the best teams act like partners, not order-takers, a principle he has
carried from client trenches to boardroom strategy.

As CTO of Cleverbit, he extends this philosophy into the era of AI,
exploring how new tools can amplify delivery without losing guardrails,
accountability, or long-term focus.

About the Authors

Simon has spent the last 15 years building and leading
technology teams across startups, scale-ups, and
enterprises.

He’s carried the scars of missed deadlines, outsourcing
failures, and hard-fought turnarounds. Those experiences
shaped his conviction that high-performance teams aren’t
an accident. They’re designed.

Simon Azzopardi
Partner

Eman Zerafa
CTO, Engineering & AI Leadership

https://cleverbit.software/

